首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40842篇
  免费   3357篇
  国内免费   3079篇
  2024年   14篇
  2023年   502篇
  2022年   640篇
  2021年   2028篇
  2020年   1464篇
  2019年   1844篇
  2018年   1750篇
  2017年   1265篇
  2016年   1854篇
  2015年   2490篇
  2014年   3043篇
  2013年   3269篇
  2012年   3904篇
  2011年   3372篇
  2010年   2090篇
  2009年   1808篇
  2008年   2074篇
  2007年   1818篇
  2006年   1537篇
  2005年   1357篇
  2004年   1155篇
  2003年   1045篇
  2002年   909篇
  2001年   751篇
  2000年   695篇
  1999年   688篇
  1998年   436篇
  1997年   445篇
  1996年   427篇
  1995年   384篇
  1994年   349篇
  1993年   230篇
  1992年   340篇
  1991年   258篇
  1990年   225篇
  1989年   184篇
  1988年   124篇
  1987年   124篇
  1986年   81篇
  1985年   96篇
  1984年   61篇
  1983年   53篇
  1982年   42篇
  1981年   26篇
  1980年   11篇
  1979年   10篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
91.
92.
93.
94.
95.
Although endolysosomal trafficking is well defined, how it is regulated and coordinates with cellular metabolism is unclear. To identify genes governing endolysosomal dynamics, we conducted a global fluorescence-based screen to reveal endomembrane effector genes. Screening implicated Phox (PX) domain–containing protein Mdm1 in endomembrane dynamics. Surprisingly, we demonstrate that Mdm1 is a novel interorganelle tethering protein that localizes to endoplasmic reticulum (ER)–vacuole/lysosome membrane contact sites (MCSs). We show that Mdm1 is ER anchored and contacts the vacuole surface in trans via its lipid-binding PX domain. Strikingly, overexpression of Mdm1 induced ER–vacuole hypertethering, underscoring its role as an interorganelle tether. We also show that Mdm1 and its paralogue Ydr179w-a (named Nvj3 in this study) localize to ER–vacuole MCSs independently of established tether Nvj1. Finally, we find that Mdm1 truncations analogous to neurological disease–associated SNX14 alleles fail to tether the ER and vacuole and perturb sphingolipid metabolism. Our work suggests that human Mdm1 homologues may play previously unappreciated roles in interorganelle communication and lipid metabolism.  相似文献   
96.
Argonaute (Ago) proteins and microRNAs (miRNAs) are central components in RNA interference, which is a key cellular mechanism for sequence-specific gene silencing. Despite intensive studies, molecular mechanisms of how Ago recognizes miRNA remain largely elusive. In this study, we propose a two-step mechanism for this molecular recognition: selective binding followed by structural re-arrangement. Our model is based on the results of a combination of Markov State Models (MSMs), large-scale protein-RNA docking, and molecular dynamics (MD) simulations. Using MSMs, we identify an open state of apo human Ago-2 in fast equilibrium with partially open and closed states. Conformations in this open state are distinguished by their largely exposed binding grooves that can geometrically accommodate miRNA as indicated in our protein-RNA docking studies. miRNA may then selectively bind to these open conformations. Upon the initial binding, the complex may perform further structural re-arrangement as shown in our MD simulations and eventually reach the stable binary complex structure. Our results provide novel insights in Ago-miRNA recognition mechanisms and our methodology holds great potential to be widely applied in the studies of other important molecular recognition systems.  相似文献   
97.
Escherichia coli is one of the most common pathogens in nosocomial and community-acquired infections in humans. Fosfomycin is a broad-spectrum antibiotic which inhibits peptidoglycan synthesis responsible for bacterial cell wall formation. Although low, the exact E. coli susceptibility to fosfomycin as well as the mechanisms of resistance in the population from Mainland China are mostly unknown. 1109 non-duplicate clinical E. coli strains isolated from urine, sputum, blood and pus samples in 20 widely dispersed tertiary hospitals from Mainland China were collected from July 2009 to June 2010, followed by determination of minimum inhibitory concentrations of fosfomycin. Detection of the murA, glpT, uhpT, fosA, fosA 3 and fosC genes was performed in fosfomycin non-susceptible E. coli strains and conjugation experiments were employed to determine the mobility of fosA 3 gene. In this study, 7.8% (86/1109) E. coli strains were fosfomycin non-susceptible. Amino acid substitutions in GlpT and MurA were found in six and four E.coli strains, respectively, while the uhpT gene was absent in eighteen E.coli strains. Twenty-nine isolates carried the transferable plasmid with the fosA 3 gene at high frequencies of around 10−6 to 10−7 per donor cell in broth mating. The majority of isolates were susceptible to fosfomycin, showing that the drug is still viable in clinical applications. Also, the main mechanism of E. coli resistance in Mainland China was found to be due to the presence of the fosA 3 gene.  相似文献   
98.
The hedgehog signalling pathway is one of the key regulators of metazoan development, and it plays an important role in the regulation of a variety of developmental and physiological processes. But it is aberrantly activated in many human diseases, including osteoarthritis (OA). In this study, we have reviewed the association of hedgehog signalling pathway in the development and progression of OA and evaluated the efforts to target this pathway for the prevention of OA. Usually in OA, activation of hedgehog induces up-regulation of the expression of hypertrophic markers, including type X collagen, increases production of nitric oxide and prostaglandin E2, several matrix-degrading enzymes including matrix metalloproteinase and a disintegrin and metalloproteinase with thrombospondin motifs in human knee joint cartilage leading to cartilage degeneration, and thus contributes in OA. Targeting hedgehog signalling might be a viable strategy to prevent or treat OA. Chemical inhibitors of hedgehog signalling is promising, but they cause severe side effects. Knockdown of HH gene is not an option for OA treatment in humans because it is not possible to delete HH in larger animals. Efficient knockdown of HH achieved by local delivery of small interfering RNA in future studies utilizing large animal OA models might be a more efficient approach for the prevention of OA. However, it remains a major problem to develop one single scaffold due to the different physiological functions of cartilage and subchondral bones possess. More studies are necessary to identify selective inhibitors for efficiently targeting the hedgehog pathway in clinical conditions.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号